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 2 

Tiger sharks (Galeocerdo cuvier) are notorious for their dietary breadth. As predators, 42 

tiger sharks actively hunt prey including crustaceans, fishes, sea snakes, sea turtles, sea birds, 43 

and marine mammals (Castro 2010), but as facultative scavengers, they also supplement their 44 

diet by opportunistically scavenging items such as whale carcasses (Clua et al. 2013). 45 

Surprisingly, tiger sharks consume terrestrial birds as well. While isolated and anecdotal 46 

accounts date back to the 1960s, we know little about the pervasiveness of, and mechanism 47 

behind, this unique trophic interaction.  48 

In 2010, while conducting a long-term shark population monitoring survey along the 49 

Mississippi/Alabama coast, we captured a small tiger shark that regurgitated feathers prior to 50 

being tagged and released. We collected the feathers for further inspection; subsequent visual 51 

identification and DNA barcoding revealed that the feathers belonged to a brown thrasher 52 

Toxostoma rufum. During monthly surveys from 2010 to 2018, we opportunistically examined 53 

stomach contents from 105 tiger sharks for the presence of whole birds and bird remains 54 

(feathers, beaks, feet) using gut content analysis from dead sharks and gastric lavage from live 55 

sharks (Figure 1).  56 

Tiger shark/bird interactions were pervasive and occurred each year from 2010 to 2018 57 

with the exception of 2014; none of the tiger sharks caught that year were examined for bird 58 

remains. Most of the interactions took place in the fall (September, October, and November), 59 

although some interactions took place during the spring (April and May). Of the 105 sharks 60 

examined, 41 (39%) contained bird remains. We archived all bird remains for visual 61 

identification and DNA barcoding. These techniques facilitated conclusive identification of 11 62 

bird species in 13 interactions: 8 passerine songbirds (barn swallow Hirundo rustica, eastern 63 

kingbird Tyrannus tyrannus, house wren Troglodytes aedon, common yellowthroat Geothlypis 64 
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 3 

trichas, marsh wren Cistothorus palustris, eastern meadowlark Strunella magna, swamp sparrow 65 

Melospiza georgiana, and brown thrasher); 2 near passerine land birds (white-winged dove 66 

Zenaida asiatica and yellow-bellied sapsucker Sphyrapicus varius); and 1 waterbird (American 67 

coot Fulica Americana). Counter to our expectations, no marine birds were found in tiger shark 68 

stomachs. 69 

To explore a potential mechanism underpinning the pervasiveness of tiger shark 70 

encounters with terrestrial birds, we used data from eBird (https://ebird.org), the world’s largest 71 

biodiversity-related citizen science project. We queried bird sightings data from the 72 

Mississippi/Alabama coast for our 11 species of terrestrial birds during spring and fall migration 73 

(Able 1972), the periods corresponding to the trophic interactions. Peaks in coastal bird sightings 74 

for the 11 species we identified showed remarkable alignment with individual tiger shark/bird 75 

interactions (Figure 2A), suggesting that tiger shark consumption of these terrestrial birds is tied 76 

to predictable annual migrations rather than episodic events. In the spring, areas along coastal 77 

Mississippi and Alabama are the first stopover location for migratory birds flying north; in the 78 

fall, these same areas are the final stopover for southward-migrating birds prior to crossing the 79 

Gulf of Mexico. We predicted that tiger shark/bird interactions would occur primarily during the 80 

spring, when fatigued northward-migrating birds struggle to reach the Mississippi/Alabama coast 81 

following their long journey across the Gulf of Mexico. Surprisingly, 11 of the 13 interactions 82 

we documented took place in the fall, during the initial portion of the birds’ southward 83 

migration. In coastal Alabama, departure decisions for southward-migrating birds are influenced 84 

by a combination of factors including energetic condition, weather, and date. Specifically, once 85 

migratory birds accumulate ample fat reserves, they strategically time their fall departure to 86 

coincide with favorable (i.e. southward) winds following cold fronts, which are more prevalent 87 
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in late fall (after September 24th) (Deppe et al. 2015). However, following departure, unforeseen 88 

weather events can result in mass mortality (thousands of birds per event; Newton 2007). These 89 

inclement weather events force migratory birds to the surface of the water, where (unlike 90 

waterbirds) they are unable to rest and resume flight. We suggest that these weather events, 91 

while lethal for the birds, provide unique scavenging opportunities for tiger sharks.   92 

Tiger sharks are capable of aligning their movements and/or altering their foraging 93 

strategy to coincide with seasonal peaks in resource availability. For example, individual tiger 94 

sharks travel thousands of kilometers to remote Hawaiian atolls specifically to prey on 95 

seasonally abundant fledgling albatross (Phoebastria spp.) during summer months (Meyer et al. 96 

2010). Additionally, off the coast of Australia, tiger sharks rely on scavenging abundant green 97 

turtle (Chelonia mydas) carcasses as their principle feeding strategy during the nesting season 98 

(Hammerschlag et al. 2016). The events we observed differ from those in Hawaii and Australia 99 

in two primary ways. While the above-mentioned seasonal peaks in albatross and green turtle are 100 

spatially concentrated, weather-impacted migratory birds are a spatially diffuse resource. Despite 101 

this, the frequency of tiger shark/bird interactions reflects the sheer magnitude of seasonal bird 102 

migrations across the Gulf of Mexico (in excess of 2 billion birds per season; Horton et al. 2019). 103 

In addition, this seasonal pulse of nutrients benefits a particular portion of the tiger shark 104 

population. Our findings demonstrate that the timing of the fall migration for many North 105 

American birds coincides with annual peaks in the relative abundance of neonate (i.e. newborn) 106 

tiger sharks in the north-central Gulf of Mexico (Figure 2B). Of the 41 accounts of birds in tiger 107 

shark stomachs, nearly half (46%) involved consumption by neonates. At birth, neonate tiger 108 

sharks are a fraction (< 20%) of their mature size (Branstetter 1990), and they likely have very 109 

low predatory efficiency (Driggers et al. 2008). For these neonates, scavenging on easily 110 
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accessible and seasonally predictable pulses of terrestrial birds may be a way to optimize 111 

foraging success before adult hunting strategies are learned. Spanish imperial eagles Aquila 112 

adalberti also use scavenging as an efficient means of acquiring food during the first year of life 113 

(Margalida et al. 2017).  114 

Marine and terrestrial food webs are complex and coupled systems (Polis and Strong 115 

1996), often subsidized by internal (autochthonous origin) or external (allochthonous origin) 116 

resources (Nowlin et al 2008). For example, seabirds indirectly (through guano) and directly 117 

(through carrion) transfer energy between marine and terrestrial systems, inciting numerical 118 

responses across a range of species from arthropods (Polis and Hurd 1996) to carnivorous 119 

mammals (Rose and Polis 1998). Similarly, our findings suggest a predictable transfer of avian-120 

derived nutrients, yet the direction of energy exchange is reversed (i.e. terrestrial to marine). 121 

Because these birds are disproportionately consumed by neonates, the nutrients they contain may 122 

influence the dynamics of tiger shark populations. Unlike many shark species, tiger sharks do not 123 

use discrete areas as nurseries; rather, female tiger sharks may select areas of high localized 124 

primary productivity for parturition of their young (Driggers et al. 2008). For these facultative 125 

scavengers, a windfall of nutrients from the sky may explain the elevated occurrence of neonate 126 

tiger sharks in the northern Gulf of Mexico.  127 

 128 
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Figure Legends:  180 

 181 

Figure 1: Acquiring stomach contents from a live tiger shark (gastric lavage), and examples of 182 

avian remains recovered during this study. (Tiger shark gastric lavage photo by David Hay 183 

Jones).   184 

 185 

Figure 2: A) Species-specific relative abundance (number of eBird sightings) from the coasts of 186 

Mississippi and Alabama for the 11 species of birds conclusively identified in tiger shark 187 

stomachs. Distributions in orange are during the spring migration (March, April and May) and 188 

distributions in purple are from the fall migration (August, September, October, November). 189 

Vertical lines in each plot mark the date the tiger sharks from the tiger shark/bird interaction 190 

were captured. Note that house wrens were consumed by tiger sharks in two separate years and 191 

thus shown with respect to two different bird distributions. Similarly, two yellow-bellied 192 

sapsuckers were consumed, but during the same year. B) Monthly relative abundance for tiger 193 

sharks (tiger sharks/100 hooks/hour) from a shark population monitoring survey (2010-2018) 194 

along the Mississippi/Alabama coast. Error bars represent standard error of the mean.   195 
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